feat: matrix math
mul: impl Mul for LHS: i32, RHS: Matrix trait: trait MatrixMath definition for cofactor, minors, adjoint, determinant
This commit is contained in:
parent
1fdf5e281b
commit
1166581975
3 changed files with 87 additions and 44 deletions
|
|
@ -9,7 +9,7 @@
|
|||
//!
|
||||
//! Examples:
|
||||
//! ```
|
||||
//! use matrix::Matrix;
|
||||
//! use matrix::{Matrix, MatrixMath};
|
||||
//! use std::str::FromStr;
|
||||
//! let m = Matrix::from_str("1,2,3\n4,5,6\n7,8,9").expect("Expected this to work");
|
||||
//! println!("Matrix string formatting:\n{}", m);
|
||||
|
|
@ -24,8 +24,11 @@ pub mod error;
|
|||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
pub use matrix::Matrix;
|
||||
pub use matrix::{Matrix, MatrixMath};
|
||||
|
||||
pub fn test() {
|
||||
println!("Testing code here");
|
||||
let m = Matrix::from(vec![1,2,3,4,5]);
|
||||
m.transpose();
|
||||
m.determinant();
|
||||
}
|
||||
|
|
|
|||
122
src/matrix.rs
122
src/matrix.rs
|
|
@ -11,13 +11,12 @@
|
|||
//! ```
|
||||
//! TODO:: Create matrix multiplication method
|
||||
|
||||
use crate::error::{MatrixSetValueError, ParseMatrixError};
|
||||
use std::{
|
||||
fmt::Display,
|
||||
ops::{Add, Mul, Sub},
|
||||
str::FromStr,
|
||||
};
|
||||
|
||||
use crate::error::{MatrixSetValueError, ParseMatrixError};
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
pub struct Matrix {
|
||||
/// Number of rows in matrix.
|
||||
|
|
@ -29,6 +28,71 @@ pub struct Matrix {
|
|||
/// Data stored in the matrix, you should not access this directly
|
||||
data: Vec<Vec<i32>>,
|
||||
}
|
||||
|
||||
pub trait MatrixMath {
|
||||
fn inverse(&self) -> Matrix {
|
||||
(1 / (self.determinant())) * &self.adjoint()
|
||||
}
|
||||
/// Finds the matrix of cofactors for any N-by-N matrix
|
||||
fn cofactor(&self) -> Matrix {
|
||||
todo!();
|
||||
}
|
||||
/// Finds the matrix of minors for any N-by-N matrix.
|
||||
fn minor(&self) -> Matrix {
|
||||
todo!();
|
||||
}
|
||||
/// Finds the determinant of any N-by-N matrix.
|
||||
fn determinant(&self) -> i32 {
|
||||
todo!();
|
||||
}
|
||||
/// Finds the transpose of any matrix.
|
||||
fn transpose(&self) -> Matrix {
|
||||
todo!();
|
||||
}
|
||||
/// Finds the adjoint matrix (transpose of cofactors) for any N-by-N matrix.
|
||||
fn adjoint(&self) -> Matrix {
|
||||
self.cofactor().transpose()
|
||||
}
|
||||
}
|
||||
impl MatrixMath for Matrix {
|
||||
/// Evaluates any N-by-N matrix.
|
||||
///
|
||||
/// This function panics if the matrix is not square!
|
||||
fn determinant(&self) -> i32 {
|
||||
if !self.is_square() {
|
||||
panic!()
|
||||
};
|
||||
if self.nrows == 2 && self.ncols == 2 {
|
||||
return self.data[0][0] * self.data[1][1] - self.data[0][1] * self.data[1][0];
|
||||
}
|
||||
let mut tmp = 0;
|
||||
for (i, n) in self.data[0].iter().enumerate() {
|
||||
let mult = if i % 2 == 0 { -*n } else { *n };
|
||||
let eval = self.splice(i).determinant();
|
||||
tmp += mult * eval;
|
||||
}
|
||||
tmp
|
||||
}
|
||||
|
||||
/// Evaluates the tranpose of the matrix.
|
||||
///
|
||||
/// Each row becomes a column, each column becomes a row.
|
||||
fn transpose(&self) -> Matrix {
|
||||
let mut new_data = Vec::<Vec<i32>>::new();
|
||||
for i in 0..self.nrows {
|
||||
let mut new_row = Vec::<i32>::new();
|
||||
for j in 0..self.ncols {
|
||||
new_row.push(self.data[j][i]);
|
||||
}
|
||||
new_data.push(new_row);
|
||||
}
|
||||
Matrix {
|
||||
nrows: self.ncols,
|
||||
ncols: self.nrows,
|
||||
data: new_data,
|
||||
}
|
||||
}
|
||||
}
|
||||
impl Matrix {
|
||||
/// Matrix initialiser function.
|
||||
///
|
||||
|
|
@ -69,7 +133,7 @@ impl Matrix {
|
|||
pub fn is_square(&self) -> bool {
|
||||
self.nrows == self.ncols
|
||||
}
|
||||
fn splice(&self, at_index: usize) -> Matrix {
|
||||
pub fn splice(&self, at_index: usize) -> Matrix {
|
||||
let mut data: Vec<Vec<i32>> = Vec::new();
|
||||
for i in 0..self.data.len() {
|
||||
if i == 0 {
|
||||
|
|
@ -86,44 +150,6 @@ impl Matrix {
|
|||
}
|
||||
Matrix::new(data)
|
||||
}
|
||||
|
||||
/// Evaluates any N-by-N matrix.
|
||||
///
|
||||
/// This function panics if the matrix is not square!
|
||||
pub fn determinant(&self) -> i32 {
|
||||
if !self.is_square() {
|
||||
panic!()
|
||||
};
|
||||
if self.nrows == 2 && self.ncols == 2 {
|
||||
return self.data[0][0] * self.data[1][1] - self.data[0][1] * self.data[1][0];
|
||||
}
|
||||
let mut tmp = 0;
|
||||
for (i, n) in self.data[0].iter().enumerate() {
|
||||
let mult = if i % 2 == 0 { -*n } else { *n };
|
||||
let eval = self.splice(i).determinant();
|
||||
tmp += mult * eval;
|
||||
}
|
||||
tmp
|
||||
}
|
||||
|
||||
/// Evaluates the tranpose of the matrix.
|
||||
///
|
||||
/// Each row becomes a column, each column becomes a row.
|
||||
pub fn transpose(&self) -> Matrix {
|
||||
let mut new_data = Vec::<Vec<i32>>::new();
|
||||
for i in 0..self.nrows {
|
||||
let mut new_row = Vec::<i32>::new();
|
||||
for j in 0..self.ncols {
|
||||
new_row.push(self.data[j][i]);
|
||||
}
|
||||
new_data.push(new_row);
|
||||
}
|
||||
Matrix {
|
||||
nrows: self.ncols,
|
||||
ncols: self.nrows,
|
||||
data: new_data,
|
||||
}
|
||||
}
|
||||
}
|
||||
impl FromStr for Matrix {
|
||||
type Err = ParseMatrixError;
|
||||
|
|
@ -192,6 +218,20 @@ impl<'a, 'b> Sub<&'b Matrix> for &'a Matrix {
|
|||
todo!()
|
||||
}
|
||||
}
|
||||
impl<'a> Mul<&'a Matrix> for i32 {
|
||||
type Output = Matrix;
|
||||
fn mul(self, rhs: &'a Matrix) -> Self::Output {
|
||||
let mut d: Vec<Vec<i32>> = Vec::new();
|
||||
for r in &rhs.data {
|
||||
let mut nr: Vec<i32> = Vec::new();
|
||||
for v in r {
|
||||
nr.push(self * v);
|
||||
}
|
||||
d.push(nr);
|
||||
}
|
||||
Matrix::new(d)
|
||||
}
|
||||
}
|
||||
impl<'a, 'b> Mul<&'b Matrix> for &'a Matrix {
|
||||
type Output = Matrix;
|
||||
fn mul(self, rhs: &'b Matrix) -> Self::Output {
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
use std::str::FromStr;
|
||||
|
||||
use crate::{matrix::Matrix, error::ParseMatrixError};
|
||||
use crate::{error::ParseMatrixError, matrix::Matrix, MatrixMath};
|
||||
|
||||
#[test]
|
||||
pub fn test_matrix_add() -> Result<(), ParseMatrixError> {
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue