feat: support float and better test case

tests: use function to generate data, in future can use JSON test data
record to do it
matrix: use f32 type
This commit is contained in:
Zhongheng Liu 2025-01-25 14:36:32 +02:00
commit 3c2dbe0d01
Signed by: steven
GPG key ID: 805A28B071DAD84B
4 changed files with 124 additions and 41 deletions

View file

@ -28,7 +28,7 @@ pub use matrix::{Matrix, MatrixMath};
pub fn test() {
println!("Testing code here");
let m = Matrix::from(vec![1,2,3,4,5]);
let m = Matrix::from(vec![1.0,2.0,3.0,4.0,5.0]);
m.transpose();
m.determinant();
}

View file

@ -10,14 +10,14 @@
//! println!("m1 + m2 =\n{}", m_add);
//! ```
//! TODO:: Create matrix multiplication method
use core::ops::AddAssign;
use crate::error::{MatrixSetValueError, ParseMatrixError};
use std::{
fmt::Display,
ops::{Add, Mul, Sub},
str::FromStr,
};
#[derive(Debug, PartialEq, Eq)]
#[derive(Debug, PartialEq)]
pub struct Matrix {
/// Number of rows in matrix.
pub nrows: usize,
@ -26,12 +26,16 @@ pub struct Matrix {
pub ncols: usize,
/// Data stored in the matrix, you should not access this directly
data: Vec<Vec<i32>>,
data: Vec<Vec<f32>>,
}
pub trait MatrixMath {
fn inverse(&self) -> Matrix {
(1 / (self.determinant())) * &self.adjoint()
fn inverse(&self) -> Option<Matrix> {
let det_m = self.determinant();
if det_m == 0.0 {
return None;
}
Some((1.0 / det_m) * &self.adjoint())
}
/// Finds the matrix of cofactors for any N-by-N matrix
fn cofactor(&self) -> Matrix {
@ -42,7 +46,7 @@ pub trait MatrixMath {
todo!();
}
/// Finds the determinant of any N-by-N matrix.
fn determinant(&self) -> i32 {
fn determinant(&self) -> f32 {
todo!();
}
/// Finds the transpose of any matrix.
@ -55,32 +59,58 @@ pub trait MatrixMath {
}
}
impl MatrixMath for Matrix {
fn cofactor(&self) -> Matrix {
let mut d: Vec<Vec<f32>> = Vec::new();
for (i, r) in self.data.iter().enumerate() {
let mut nr: Vec<f32> = Vec::new();
for (j, v) in r.iter().enumerate() {
let count = self.ncols * i + j;
let nv = if count % 2 == 0 { -*v } else { *v };
nr.push(nv);
}
d.push(nr);
}
Matrix::new(d)
}
fn minor(&self) -> Matrix {
let mut d: Vec<Vec<f32>> = Vec::new();
for (i, r) in self.data.iter().enumerate() {
let mut nr: Vec<f32> = Vec::new();
for (j, v) in r.iter().enumerate() {
let count = self.ncols * i + j;
let nv = if count % 2 == 0 { -*v } else { *v };
nr.push(nv * self.splice(j, i).determinant());
}
d.push(nr);
}
Matrix::new(d)
}
/// Evaluates any N-by-N matrix.
///
/// This function panics if the matrix is not square!
fn determinant(&self) -> i32 {
fn determinant(&self) -> f32 {
if !self.is_square() {
panic!()
};
if self.nrows == 2 && self.ncols == 2 {
return self.data[0][0] * self.data[1][1] - self.data[0][1] * self.data[1][0];
}
let mut tmp = 0;
let mut tmp: f32 = 0.0;
for (i, n) in self.data[0].iter().enumerate() {
let mult = if i % 2 == 0 { -*n } else { *n };
let eval = self.splice(i).determinant();
tmp += mult * eval;
let eval = self.splice(i, 0).determinant();
tmp = tmp + mult * f32::from(eval);
}
tmp
tmp.into()
}
/// Evaluates the tranpose of the matrix.
///
/// Each row becomes a column, each column becomes a row.
fn transpose(&self) -> Matrix {
let mut new_data = Vec::<Vec<i32>>::new();
let mut new_data = Vec::<Vec<f32>>::new();
for i in 0..self.nrows {
let mut new_row = Vec::<i32>::new();
let mut new_row = Vec::<f32>::new();
for j in 0..self.ncols {
new_row.push(self.data[j][i]);
}
@ -100,17 +130,26 @@ impl Matrix {
///
/// TODOs
/// - Add row length check
pub fn new(data: Vec<Vec<i32>>) -> Matrix {
pub fn new(data: Vec<Vec<f32>>) -> Matrix {
let mut d: Vec<Vec<f32>> = Vec::new();
for r in &data {
let mut nr = vec![];
for x in r {
nr.push(*x);
}
d.push(nr);
}
Matrix {
nrows: data.len(),
ncols: data[0].len(),
data,
data: d,
}
}
/// Query one element at selected position.
///
/// Returns `None` if index is out of bounds.
pub fn get(&self, row_index: usize, column_index: usize) -> Option<i32> {
pub fn get(&self, row_index: usize, column_index: usize) -> Option<f32> {
let r = self.data.get(row_index)?;
let n = r.get(column_index)?;
Some(*n)
@ -123,7 +162,7 @@ impl Matrix {
&mut self,
row_index: usize,
column_index: usize,
new_data: i32,
new_data: f32,
) -> Result<(), MatrixSetValueError> {
self.data[row_index][column_index] = new_data;
Ok(())
@ -133,13 +172,13 @@ impl Matrix {
pub fn is_square(&self) -> bool {
self.nrows == self.ncols
}
pub fn splice(&self, at_index: usize) -> Matrix {
let mut data: Vec<Vec<i32>> = Vec::new();
fn splice(&self, at_index: usize, at_row: usize) -> Matrix {
let mut data: Vec<Vec<f32>> = Vec::new();
for i in 0..self.data.len() {
if i == 0 {
if i == at_row {
continue;
}
let mut r: Vec<i32> = Vec::new();
let mut r: Vec<f32> = Vec::new();
for j in 0..self.data[i].len() {
if j == at_index {
continue;
@ -154,12 +193,12 @@ impl Matrix {
impl FromStr for Matrix {
type Err = ParseMatrixError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let mut d: Vec<Vec<i32>> = Vec::new();
let mut d: Vec<Vec<f32>> = Vec::new();
let rows_iter = s.split('\n');
for txt in rows_iter {
let mut r: Vec<i32> = Vec::new();
let mut r: Vec<f32> = Vec::new();
for ch in txt.split(',') {
let parsed = match i32::from_str(ch) {
let parsed = match f32::from_str(ch) {
Ok(n) => Ok(n),
Err(_e) => Err(ParseMatrixError),
};
@ -218,12 +257,12 @@ impl<'a, 'b> Sub<&'b Matrix> for &'a Matrix {
todo!()
}
}
impl<'a> Mul<&'a Matrix> for i32 {
impl<'a> Mul<&'a Matrix> for f32 {
type Output = Matrix;
fn mul(self, rhs: &'a Matrix) -> Self::Output {
let mut d: Vec<Vec<i32>> = Vec::new();
let mut d: Vec<Vec<f32>> = Vec::new();
for r in &rhs.data {
let mut nr: Vec<i32> = Vec::new();
let mut nr: Vec<f32> = Vec::new();
for v in r {
nr.push(self * v);
}
@ -235,21 +274,21 @@ impl<'a> Mul<&'a Matrix> for i32 {
impl<'a, 'b> Mul<&'b Matrix> for &'a Matrix {
type Output = Matrix;
fn mul(self, rhs: &'b Matrix) -> Self::Output {
fn reduce(lhs: &Matrix, rhs: &Matrix, at_r: usize, at_c: usize) -> i32 {
let mut tmp = 0;
fn reduce(lhs: &Matrix, rhs: &Matrix, at_r: usize, at_c: usize) -> f32 {
let mut tmp = 0.0;
for i in 0..lhs.ncols {
tmp += lhs.get(at_r, i).unwrap() * rhs.get(i, at_c).unwrap();
}
tmp
}
let mut d: Vec<Vec<i32>> = Vec::new();
let mut d: Vec<Vec<f32>> = Vec::new();
if self.ncols != rhs.nrows {
println!("LHS: \n{}RHS: \n{}", self, rhs);
println!("LHS nrows: {} ;; RHS ncols: {}", self.nrows, rhs.ncols);
panic!()
}
for i in 0..self.nrows {
let mut r: Vec<i32> = Vec::new();
let mut r: Vec<f32> = Vec::new();
for j in 0..rhs.ncols {
r.push(reduce(self, rhs, i, j));
}
@ -259,8 +298,8 @@ impl<'a, 'b> Mul<&'b Matrix> for &'a Matrix {
}
}
impl From<Vec<i32>> for Matrix {
fn from(value: Vec<i32>) -> Self {
impl From<Vec<f32>> for Matrix {
fn from(value: Vec<f32>) -> Self {
Matrix {
nrows: value.len(),
ncols: 1,

View file

@ -2,23 +2,67 @@ use std::str::FromStr;
use crate::{error::ParseMatrixError, matrix::Matrix, MatrixMath};
enum TestCaseType {
Add,
Mul,
Inv,
CmpErr,
}
struct TestCase {
test_type: TestCaseType,
test_data: Vec<Matrix>,
}
fn build_add_test_cases() -> Vec<TestCase> {
let mut v = vec![];
let from_strs = vec![
"1,2,3\n4,5,6\n7,8,9",
"1,1,1\n1,1,1\n1,1,1",
"2,3,4\n5,6,7\n8,9,10",
"1,1,1\n1,1,1\n1,1,1",
"0,0,0\n0,0,0\n0,0,0",
"1,1,1\n1,1,1\n1,1,1",
];
let mut i = 0;
while i < from_strs.len() {
let m1 = Matrix::from_str(from_strs[i]).unwrap();
let m2 = Matrix::from_str(from_strs[i+1]).unwrap();
let mr = Matrix::from_str(from_strs[i+2]).unwrap();
v.push(TestCase {
test_type: TestCaseType::Add,
test_data: vec![m1, m2, mr],
});
i += 3;
}
v
}
#[test]
pub fn test_matrix_add() -> Result<(), ParseMatrixError> {
let m1 = Matrix::from_str("1,2,3\n4,5,6\n7,8,9")?;
let m2 = Matrix::from_str("1,1,1\n1,1,1\n1,1,1")?;
let t = Matrix::from_str("2,3,4\n5,6,7\n8,9,10")?;
assert_eq!(&m1 + &m2, t);
let cases = build_add_test_cases();
for case in cases {
assert_eq!(&case.test_data[0] + &case.test_data[1], case.test_data[2]);
}
Ok(())
}
#[test]
pub fn test_matrix_determinate() -> Result<(), ParseMatrixError> {
let m = Matrix::from_str("3,4\n5,6")?;
let det = 3 * 6 - 4 * 5;
let det = 3.0 * 6.0 - 4.0 * 5.0;
assert_eq!(m.determinant(), det);
Ok(())
}
#[test]
pub fn test_matrix_transposition() -> Result<(), ParseMatrixError> {
pub fn test_matrix_inverse_on_singular() -> Result<(), ()> {
let m = Matrix::new(vec![vec![1.0,2.0,3.0], vec![4.0,5.0,6.0], vec![7.0,8.0,9.0]]);
match m.inverse() {
Some(_inverse) => Err(()),
None => Ok(()),
}
}
#[test]
pub fn test_matrix_transpose() -> Result<(), ParseMatrixError> {
let m = Matrix::from_str("1,2,3\n4,5,6\n7,8,9")?;
let t = Matrix::from_str("1,4,7\n2,5,8\n3,6,9")?;
assert_eq!(m.transpose(), t);

View file

@ -4,7 +4,7 @@ use crate::{matrix::Matrix, error::ParseMatrixError};
#[test]
pub fn test_matrix_init_from_string() -> Result<(), ParseMatrixError> {
let data_target = vec![vec![1, 2, 3], vec![4, 5, 6], vec![7, 8, 9]];
let data_target = vec![vec![1.0, 2.0, 3.0], vec![4.0, 5.0, 6.0], vec![7.0, 8.0, 9.0]];
let target = Matrix::new(data_target);
let test = Matrix::from_str("1,2,3\n4,5,6\n7,8,9")?;
assert_eq!(target, test);