

1

CSE1100: Object Oriented
Programming

T. Overklift / A. Zaidman

Date: 05-01-2021 Duration: 3 hours Pages: 5

Allowed resources
The following resources can be used during this exam:

• The slides, videos, assignments, tutorials, and book(s) about CSE1100.

• The Java API documentation.

• Existing internet resources (if you copy a solution from the internet, copy the
URL and put the URL in the Javadoc)

• Any IDE that you like (e.g., IntelliJ), including its features to generate code like
getters, equals methods, etc.

Disallowed resources
• Any information that you obtain from a person, either directly or indirectly.

• Actively asking / answering questions on online platforms.

→ Attempts at fraud will be reported to the Board of Examiners

About the exam
• Read the entire assignment and only then start implementing.

• You can find a scoring roster on the final page of this document.

• Hand in your program before 21:30 (when working with regular time).
o Upload a zip file holding your solution through Weblab.
o Create your zip file five minutes ahead of the deadline.
o Make sure it includes at least your source files (.java).
o Name the zip file [studentnumber].zip, e.g., 1234567.zip You can find your

student number on your student card (7 digits; below your picture).

• Please, do not use specific packages but use the default package (this makes
correcting the exam that much easier for us). If you do use a specific package, you
will lose 1 point.

• Your project (sources and tests) must compile to get a passing grade. Sometimes
your IDE will allow you to “proceed” even when some classes do not compile. We will
still see this as a compilation failure. Ensure that ALL classes you hand in compile.

Setting up your project in IntelliJ
• Once IntelliJ has started go to File > New > Project

• Select a suitable Java version (we recommend 11 or higher) and click next twice.

• Type a project name (the exact name does not matter).

• Click finish.

• Do not use packages other than the “default package”.

2

PersonalFit web shop

PersonalFit is a young and energetic company that specializes in fitness equipment and
related products. With the COVID-19 pandemic they have seen a surge in customers as
everyone wants to buy fitness equipment now that sports clubs need to stay closed. To
accommodate further growth, they need a new IT system for internal use. You are now
tasked with building a prototype of that system.

You need to create a prototype with a textual interface.

The prototype application that you should develop reads in a manifest file that contains
products that PersonalFit sells. An example manifest file is shown below. The complete file
personalfit.txt is available through Weblab. Your implementation needs to be able to read
the provided file on regardless of your operating system, so make sure you test on the file
downloaded from Weblab.

HomeTrainerBike Tunturi; T1200; Glutes, Leg Muscles; TRUE; 234 euros
ProteinShake AlbertHeijn; Chocolate; 1000 grams; 23 euros
SpinningBike Tunturi; T2100; Glutes, Leg Muscles, Back, Shoulders; FALSE;
12KG; Magnetic; 499 euros
ProteinShake QNT; Banana; 300 grams; 12 euros
ProteinShake QNT; Vanilla; 600 grams; 20 euros
SpinningBike VirtuFit; Radical2000; Glutes, Leg Muscles, Back, Shoulders;
TRUE; 21KG; Magnetic; 799 euros

The 3 main products that PersonalFit sells are the traditional HomeTrainerBike, the more
advanced SpinningBike, and the protein shakes. The products are categorized by the
following properties:

HomeTrainerBike

• Brand

• Model

• Muscle groups (this is a comma separated list of all muscle groups targeted)

• Whether an electronic display is present that shows key info such as the distance
covered (TRUE/FALSE).

• The price

SpinningBike (is a special kind of HomeTrainerBike)

• Brand

• Model

• Muscle groups (this is a comma separated list of all muscle groups targeted)

• Whether an electronic display is present that shows key info such as the distance
covered (TRUE/FALSE).

• The weight of the flywheel

• The resistance mechanism (e.g., traditional, magnetic, …)

• The price

ProteinShake

• Brand

• Flavour

• Size in weight

• The price

3

PersonalFit asks you to design and implement a program that:
• Reads in a file as specified by the user, for example the file personalfit.txt. Reading

in the file happens at the start-up of the program.

• Outputs the entire catalogue of products that PersonalFit has (this includes both
protein shakes and fitness bikes).

• Offers a way to randomly propose a protein shake to a customer.

• Add a new protein shake to the catalogue.

• Write all information in the catalogue to a file (preserving the file format!).

• Write an equals() method for each class (except for the class that contains the

main() method)

• Make sure that your program is designed in such a way that it is easy to add new
product categories, all the while storing all products in an efficient, yet uniform way.

To enable user interaction, please provide a command line interface with System.out.*.

This interface should have the following menu:
Please make your choice:

 1 – Print all bikes & protein shakes
2 – Add a new protein shake

 3 – Propose a random protein shake to the customer

4 – Show bikes that train a specific muscle group

 5 – Write to file
 6 – Stop the program

Option 1: Print all elements in the catalogue
This option prints all bikes and shakes that are currently in the system in a neat format. An
example print is shown below. Please note: your format does not have to be the same as
below, but should be more neat than in the input file.

Bike: Tunturi T1200
Muscle groups: Glutes & Leg Muscles
An electronic display that visualizes speed is present.
The price is: 234 euros.

Protein Shake: Albert Heijn,
Flavour: chocolate
Size: 100 grams
Price: 23 euros.

Option 2: Add a new protein shake
Through questions you ask the user to fill in all the necessary data for a protein shake.
Subsequently, you add the new protein shake to the data structure.

Option 3: Propose a random protein shake (& print it)
As PersonalFit strongly believes in protein shakes, they want to advertise a protein shake to
each of their customers. For this initial implementation, PersonalFit asks you to implement
functionality that can propose a random protein shake in the application. If this option is
selected, you randomly select a protein shake from the protein shakes that are in stock and
print the information related to this shake.
To ensure that the program is still responsive while a random protein shake is being

selected. Please implement this feature with multi-threading and make sure that no

additional protein shakes can be added during the random selection of a protein shake to

avoid potential concurrency issues. If you can implement multi-threading but not the random

shake proposal, please print “Thread started" or something similar from the new thread.

4

Option 4: Search for a muscle group (& print all bikes that train this muscle group)

You should parse out all muscle groups and store them in a list of muscle groups affected
per bike. Then search for bikes that target the muscle group the user wants.
A) If no bike meets the criteria. Report that back to the user.
B) If one or more bikes do train that muscle group, print those bikes to screen like Option 1.

For full points you need to implement option 4 using functional programming (e.g. using a
stream instead of a for loop).

Option 5: Write to file
Create new file called “output.txt" with the information that is currently in the system in the
same file format as the input. The information that you write to file should come from the
data structure that you have created.

Option 6: Quit application
The application stops.

Some important things to consider for this assignment:

• The program and the tests should compile

• Think about the usefulness of applying inheritance and/or interfaces.

• The filename personalfit.txt should not be hardcoded in your Java program.
Please make sure to let the user provide it when starting the program (either as an
explicit question to the user or as a “command line input”)

• Write unit tests (look at how your score for this exam is built up at the very end of this
document)

• For a good grade, your program should also work well, without exceptions.
Take care to have a nice programming style, in other words make use of code
indentation, whitespaces, logical identifier names, etc. Also supply Javadoc
comments.

Handing in your work
To hand in your work you must create a ZIP (so not .7z or anything else) file holding all your .java-
files, you may also .zip your entire project folder.

Important: Rename the ZIP file to your student number, e.g., “4567890.zip”.

Double-check the correctness of the number using your campus card.

Finally, upload your .zip archive to Weblab!

5

Grade composition
2 points Compilation

o If your solution does not compile → final score = 1
1.3 points Inheritance

o Proper use of inheritance. Additionally, there should be a good division of logic
between classes & interfaces, as well as the proper use of (non-)access
modifiers.

0.3 points equals() implementation

o Correct implementation of equals() in all classes that are part of your data

model.
0.6 points File reading

o Being able to read the user-specified files and parsing the information into
Objects. A partially functioning reader may still give some points.

0.6 points File writing
o Being able to write the user-specified files and parsing the information into

Objects. A partially functioning writer may still give some points.
1 point Code style

o Ensure you have code that is readable. This includes (among others) clear
naming, use of whitespaces, length and complexity of methods, Javadoc, etc.

0.5 points User Interface
o Having a well-working textual interface (including option 1, which prints the

catalogue contents). A partially functioning interface may still give some points.
0.3 points Adding new protein shakes

o For adding new protein shakes and letting the user enter the details (option 2).
1.4 points JUnit tests

o 0.6 points for testing the class SpinningBike (depending on how well you test, you
get a score between 0.0 and 0.5)

o 0.6 points for testing all other classes & methods (except the main() method,

and methods that depend on external resources such as files, you get a score
between 0.0 and 0.6 depending on how well you test). Do not use files in your
tests! (although you can create a String with (part of) the content of a file to test
reading in…).

o 0.2 points for testing with randomness, consider using a seed (Do not forget to
mention where you found the information – the URL!)

0.6 points Threads
o 0.3 points for implementing the thread correctly.
o 0.3 points for the correct use of synchronization.

0.5 points Propose a protein shake (with randomness, options 3).
o 0.2 points for a working implementation.
o 0.3 points for using proper randomness.

0.9 points Search for bikes that target specific muscle groups.

o 0.5 points for a working implementation.
o 0.4 points for using functional programming.

There is a 1-point penalty if you do not work in the default package.
There is a 0.5-point penalty if you hardcode the filename.

